
190 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

Integrated Replication-Checkpoint Fault Tolerance

Approach of Mobile Agents “IRCFT”

Suzanne Sweiti
1
 and Amal Al Dweik

2

1
Deanship of Graduate Studies and Scientific Research, Palestine Polytechnic University, Palestine

2
College of Information Technology and Computer Engineering,

 Palestine Polytechnic University, Palestine

Abstract: Mobile agents offer flexibility which is evident in distributed computing environments. However, agent systems are

subject to failures that result from bad communication, breakdown of agent server, security attacks, lack of system resources,

congestion in network, and situations of deadlock. If any of such things happen, mobile agents suffer loss or damage totally or

partially while execution is being carried out. Reliability must be addressed by the mobile agent technology paradigm. This

paper introduces a novel fault tolerance approach “IRCFT” to detect agent failures as well as to recover services in mobile

agent systems. Our approach makes use of checkpointing and replication where different agents cooperate to detect agent

failures. We described the design of our approach, and different failure scenarios and their corresponding recovery

procedures are discussed. The proposed system is implemented over Agelt platform. The system improves the performance

significantly.

Keywords: Mobile agents, fault tolerance, reliability, checkpointing, replication.

Received September 15, 2015; accepted October 18, 2015; published on line January 28, 2016

1. Introduction

In both the academic and industrial trends, mobile

agents are very important in the recent trends of

distributed computing. They have their own properties

which make them flexible in the deployment. As a

result, the design, application and maintenance of the

distributed systems become a simple task [10, 11].

Like any other software systems, mobile agents are

not isolated from operating in unusual situations. They

are somewhat subject to fault as they consist of

autonomous components in distributed dynamic

environments [2]. Mobile agents might come across

usual errors which emerge especially during migration

request failure, security penetration or communication

exceptions [13]. The issue of reliability is extremely

important in order to challenge such failures. The goal

is to allow the system to work flexibly in spite of the

faults which continue to exist in the system after

development [10].

In recent years, Multi-Agent Systems (MAS) had

started gaining widespread acceptance in the field of

information technology [3]. The most important

requirements among the approaches to handle the fault

tolerance in MAS are: Non-blocking and exactly-once

[1]. The non-blocking property guarantees that the

agent continues executing to achieve its goal even in

case of an infrastructure component. The use of

replication may cause the violating of the dominant

property of the mobile agent: The exactly once

execution of the mobile agent [1]. The objective of the

protocols for dealing with the exactly-once property is

to ensure that the agent has to carry out the intended

action one time only in a host.

The remainder of this paper is organized as follows:

The next section introduces the previous work. Section

3 defines our model, different failures and recovery

scenarios are discussed in section 4. The characteristic

of the presented approach are discussed in section 5. In

section 6, a comparison between approaches is done.

Implementation is introduced in section 7. Finally, the

conclusion is introduced in section 8 followed by the

references.

2. Related Works

Singh and Dave [14] have proposed an approach for

providing efficient fault tolerance in mobile agent

systems to overcome certain failures. The parallel

checkpointing approach is used which considers the

antecedence graphs. The used graphs are directed

acyclic graphs that record the dependency information.

Hans and Kaur [5] have proposed an approach to

sort out the agent crash problem. The clone of original

agent is used in an itinerary to follow the actual agent.

So, if any failure occurs in the mobile agent system,

the recovery is possible by the clone.

The main aim is to limit the rollback by adding

checkpoints. Rostami et al. [12] suggested that the

server and agent failures are detected and recovered by

the cooperation of agents with each other. In order to

detect and recover the failed agent in 2-Dimensional

Integrated Replication-Checkpoint Fault Tolerance Approach of Mobile Agents “IRCFT” 191

Mesh Network, another types of agent are used,

namely the witness agent, to monitor whether the

actual agent is alive or dead. However, the idea of

agent tracking technique is described in [9]. It provides

an efficient system where excellent management and

maintenance can be performed in the networks of

mobile agents.

Zeghache and Badache [15], the fault tolerant

mechanism has been laid with relation to the

applications that deal with transactions. The protocol

proposed is based on the behaviour of mobile agent,

Watch Agent as well as Transaction Manager. The

designing of adaptive mobile agents [8] aims at

accepting additional roles when working inside a

special environment that is called context-aware

environment.

Kaur et al. [6], an integrated mechanism has been

proposed using Secure Mobile Agent Platform System

(SMAPS) which aims to prevent agent blocking in

certain cases where agent is identified by malicious

host. Then, it is used to follow the location of the

mobile agents during the process at any time.

Hans and Kaur [4], the agent put its computation

results on the home server after completing its task on

first three servers in its itinerary. The approach makes

use of check pointing, partial results and the address of

last host visited is saved prior before the agent visits

the next host in the itinerary.

Lyu and Wong [7] raised another fault-tolerant

model based on Witness. This model employs three

types of agents. Discovery of failure is done by witness

agent and recovery is message log based recovery and

also checkpointing.

3. Integrated Replication-Checkpoint Fault

Tolerance Approach (IRCFT)

IRCFT approach is a development of that implemented

in [4, 7]. We address a fault tolerance approach of

deploying cooperating agents. The basic idea used in

the work is to tolerate faults using the concept of

checkpoint and replication.

3.1. Assumptions

The agents in IRCFT communicate at different

locations by exchanging messages through unreliable

communication channels. Therefore, the system is

assumed to use unreliable network connection. Some

specific assumptions in the system may be summarized

in the following points:

1. Agents in the system can be generated from every

server on network.

2. The home server is always available and free of

failure.

3. No failure in log entries and the mobile agent can be

recorded in the permanent storage.

4. No Byzantine failure.

5. When a server failure occurs in Si, all the agents

inside Si will be terminated.

3.2. IRCFT Description

In our approach, we distinguish four types of agents;
one type is performing the required computation for
the user, named as Worker Agent (WA). Another type
is to detect the status of the actual agent, named as
Monitor Agent (MA). It is responsible to monitor the
status of other monitors. The third agent is the
Manager agent which responsible to send the address
of the next server to WA. The last agent's is the replica
agent to recover WA. MA and WA communicate by
using a peer-to-peer messages passing mechanism. MA
sets a timer with a certain time-out value for each
server Si. We also need to log the actions performed by
the WA. The information logged by the agent is vital
for failure detection.

During an agent’s trip, the agent will visit a number
of servers. The sequence of servers visited composes
the agent’s itinerary. The servers on the itinerary are
denoted by S0, S1, S2…, Sn, where Si is the i

th
 visited

server. Specially, S0 is the home server on which the
agent is generated. At first, the Manager agent creates
WA and MA and they migrate to the next server.
Figure 1 illustrates the workflow of the protocol.

Assume that, currently there are n network servers
on the execution itinerary, and the WA has just arrived
at server Si+1 and does not reach the fourth server yet,
WA and MA are at the third server and the elder MA
reside in the server Si.

Figure 1. Workflow of IRCFT protocol.

The workflow is as follows:

1. After WA has arrived at Si+1, it immediately

registers a logarrive on the permanent storage in Si+1..

2. After WA has arrived at Si+1, it immediately

registers a logarrive on the permanent storage in Si+1..

3. MAi+1 informs MAi that WAi+1 has arrived at Si+1

safely by sending a msgarrive message to MAi.

4. WAi+1 creates a replica RcAi+1. This replica is used

when the agent die.

5. Next, WAi+1 accomplishes the task appointed by the

owner on Si+1.

6. After WAi+1 has finished the task, it takes a

checkpoint in timeout period (Tcp) sends it to

192 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

replica. RcAi+1 update its status using the

checkpoint.
7. WAi+1 sends message msgcheckpoint to MAi+1. The

reason of this message is to inform the MAi+1 that
RcAi+1 is updated its status.

8. WAi+1 sends its current address to the Manager
agent and waits for a response for address of the
next server. If not response it resends the request
message.

9. Manager agent sends address of next server if the
current address is not in the list of the precedent
address visited.

10. RcAi+1 sends an update message msgupdate to the
previous replicas; RcAi and RcAi-1; and waits for
reception of acknowledge message (msgack) from
the other replicas to be sure that all replicas are
updated.

11. WAi+1 registers a logleave in Si+1. This log entry
expresses that WA has completes its computation
and is ready to travel to the next server Si+2.

12. In the next step, WAi+1 sends to MAi+1 a message,
msgLogLeave, in order to inform MAi+1 that WAi+1 is
ready to leave Si+1.

13. MAi+1 sends message msgleave to MAi.
14. When MAi+1 receive msgLogArrival and msgLogLeave

from WAi+1, it spawns a new monitor in Si+1.
15. WAi+1 and the new monitor leave Si+1, and migrate

to Si+2. Note that the new witness agent knows
where to go, i.e. Si+2, because msgLogLeave contain
information about the location of Si+2.

After completing its execution on the first three servers
of the itinerary the WA moves to Si+2 and repeats the
following steps 1-3, 5, 8-9 and 11-13 motioned above.
When WAi+2 sends the logLogLeave to MAi+2, then step
16 is done.

16. WAi+2 moves back to the home server and
checkpoint the data and saves the values
computed from the previous four servers.

17. After saving the value and adding checkpoints, the
Manager agent creates a new monitor.

18. The WA and the new monitor move to the next
server in the itinerary that is Si+3.

19. Finally, the Manager agent sends msgkill to the
RcAs and MAs residing in the previous servers
since they are no longer needed.

The process is repeated for every four servers in the
itinerary until WA reaches the last destination in its
itinerary and it returns back to the home server.

4. Failure and Recovery Scenarios

If the current server is Si+1, Figure 2 shows the
different scenarios of failure in the first three servers.

Figure 2. Different scenarios of failure in the first three servers.

4.1. Safe Case

In the safe case, MAi successfully receive msgarrive and
msgleave from MAi+1 and the WAi+1 successfully
completes execution on Si+1 and moves safely to the
next server Si+2.

4.2. The Monitor MAi+1 Fails to Receive

msglogarrival

• Case 1, 2, 3 and 8. The reason can be:

1. WAi+1 is terminated when it is ready to leave Si.

2. WAi+1 is terminated when it has just arrived at

Si+1; without logging; or.

3. WAi+1 is terminated when it has just arrived at

Si+1 with logging and before sending msgLogArrival

to MAi+1.

In this case MAi+1 waits for the message msgLogArrival
for timeout period (TLogArrival). If the timeout is reached,
it sends to MAi failure message msgfailure. Then, MAi
sends msgfailure to RcAi. RcAi travel to Si+1 to recover
the failure. After the recovery is completed, the
recovered WA can start performing it computation.

4.3. The Monitor MAi+1 Fails to Receive

msgcheckpoint

• Case 4, 5 and 6. The reason can be:

1. WAi+1 is terminated when MAi+1 has just sends

msgarrive to MAi.

2. WAi+1 is finished its execution; or

3. WAi+1 is finished the checkpoint to update

RcAi+1.

In this case MAi+1 waits for the msgcheckpoint for timeout

period (Tcheckpoint). If the timeout period is reached, it

sends to Mi a failure message msgfailure. Then MAi send

msgfailure to RcAi and travel to Si+1 to recover the

failure.

4.4. The Monitor MAi+1 Fails to Receive

msglogleave

• Case 7. The reason can be:

1. WAi+1 is terminated when it has just sends

msgcheckpoint to MAi+1.

2. WAi+1 is terminated when it has just logged the

leave entry.

In this case MAi+1 waits for the msgLogLeave for timeout
period (TLogLeave). If the timeout is reached it sends to
MAi error message msgerror to inform MAi that
recovering will be through the replica locates in the
server Si+1. The error message will be sent also to
RcAi+1. Then, RcAi+1 recover the failure.

4.5. The Monitor MAi Fails to Receive msgarrive
or msgleave

1. msgarrive or msgleave is lost due to an unreliable

network.

Integrated Replication-Checkpoint Fault Tolerance Approach of Mobile Agents “IRCFT” 193

2. msgarrive or msgleave is arrived after the timeout period

of MAi; or.

3. WAi+1 and MAi+1 are terminated due a crash failure.

If the failure is because of the first two reasons, the

WAi+1 is still alive in Si+1. In this case MAi waits for

the message for timeout period (Tarrive or Tleave). If the

timeout is reached MAi sends msg_failurearrive to RcAi

to verify the logarrive; or msg_failureleave to verify

logleave. Then, RcAi travels to Si+1 to search for logarrive

or logleave in Si+1. If found, then RcAi+1 re-transmits

msgarrive or msgleave to MAi, then RcAi+1 sends a

message to MAi+1 to verify if it is lost or no. If RcAi+1

fails to receive the response, it creates a new monitor

and returns to Si.

If MAi fails to receive msgarrive because of the loss of

MAi+1 and WAi+1, it sends msg_failurearrive to the RcAi

and travel to Si+1 to search for logarrive. Upon arriving at

Si+1, it searches the log file for the entry logarrive. If the

log entry is not found, RcAi+1 sends a message to

MAi+1 to verify if it is died or no. If RcAi+1 fails to

receive the response, it creates a new monitor, recover

the WAi+1 and re-transmits the message msgarrive to

MAi.

When MAi fails to receive msgleave because of the

loss of MAi+1 and WAi+1, it sends msg_failureleave to the

RcAi and travel to Si+1 to search for logleave. Once the

RcAi reached Si+1, it searches the log file for the entry

logleave. If it is not found, RcAi+1 sends a message to

MAi+1 and waits for a response. If it fails to receive the

response, it creates a new monitor and recover the

worker agent. If the replica receives the update before

the failure then it continues the execution, otherwise it

repeats the task.

4.6. The WAi+1 and RcAi Fail

In this case MAi+1 sends msgfailure to MAi. MAi detects

that RcAi is terminated then, it re-sends the failure

message to MAi-1 in the server Si-1. Then, RcAi-1 can

migrate and recover the failure in Si+1.

4.7. Monitor Failure

In the life cycle of a monitor, the monitor periodically

sends a heartbeat message to the last monitor. It is

performed considering the following chain:

MAi-2�MAi-1�MAi�MAi+1�WAi+1.

If MAi-2 does not receive the heartbeat message;

msgheartbeat from MAi-1 after several attempts, then it

suspects that MAi-1 is down. The monitor MAi-2 will

request the identity and the server address of the next

monitor from the Manager Agent. Once MAi-2 receive

the identity and the address of the next server, it will

exclude MAi-1 from the chain by linking with monitor

MAi.

If MAi receives msgNewLink from a MAi-2, it will

consider it as the last monitor and reply with

msgheartbeat. If MAi-1 does not receive msgheartbeat from

MAi. Then it suspects that MAi is down. In this case,

MAi-1 will request the identity and the server address

of the next monitor from the Manager agent. The

Manager agent will send the next address without the

identifier. Then, MAi-1 send msgNewLinkWorker and only

MAi+1 receive the message and reply with msgarrive or

msgleave.

4.8. Bad Servers

When bad servers increase in the itinerary, both of

WA, and the monitors and replicas are down. In this

situation, the checkpoint in the home server recovers

the failure. After a period of time, a fault message is

sent to Manager Agent. It creates a new monitor and a

replicated copy of the agent to starts its execution from

the immediate checkpoint saved in the home server.

4.9. In the Fourth Server

When the WA migrates to the fourth server and
terminates the execution, the RcAs and the MAs in the
previous servers will be killed, then if the WA stops its
execution due to any fault when it is in the next server.
In this situation, a fault message is sent from the MA to
Manager agent in the home server and we have no
other option than to send the replicated copy of the
agent. The data retrieved from the previous server is
already saved to the home server with the checkpoints
after every four servers. So, the replicated agent needs
not to rollback to the first server in the itinerary. The
replicated starts its execution from the immediate
checkpoint.

5. Discussion

5.1. Preservation of the Exactly-Once Property

The exactly-once execution property is guaranteed in
IRCFT. The agent replicas are not executing while the
original executing agent is active, and it is impossible
for more than one WA to gain the acceptance from the
Manager agent for the same stage. The duplicated
agent will be terminated.

5.2. Preservation of Non-Blocking Property

The non-blocking feature is guaranteed even in the
case of multiple failures by allowing the last
checkpoint or the replica of the crashed agent to
replace it in order to continue execution even in the
case of agent failures.

5.3. Management of Monitors Failure

In this approach, new link is used to maintain the
chains of monitors. The servers with high crash rate are
eliminated from the chain; because IRCFT approach
update the replica each time after the completion of
task to be used to recover the failure.

194 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

6. Main Differences between IRCFT and

Other Approaches

IRCFT approach is a development of that in [4, 7].

IRCFT approach differs from these approaches in

several points that are summarized as follows:

1. IRCFT and the approach in [7] communicate at
different locations by exchanging messages through
unreliable communication channels but in the
approach [4] the authors use the reliable network.

2. IRCFT and the approach in [4] use the checkpoint in
the home server; checkpoint serves to save partial
results after completing the execution in a number
of servers of the itinerary. In IRCFT, the checkpoint
usage was after completing its execution on the first
four servers, but in [4] use it after three servers.

3. In [4, 7] the mobile agent knows its itinerary. In

IRCFT the worker agent requests the address of

next server from the Manager agent. For this reason,

the exactly-once feature is guaranteed. In [4] the

exactly-once property is violated due to network

congestion.

4. IRCFT minimizes the monitor agents and replicas

by terminating them by the Manager agent after the

checkpoint in the home server; because existence of

all of MA is not necessary on the initial servers [7].

5. Lyu and Wong [7] recovers the lost monitor. This is

achieved by preserving the monitoring dependency:

the recovery of MAi-1 can be performed by MAi-2.

MAi-1 will be created in order to replace the lost MA

in the server Si-1. In IRCFT recovery of monitor is

ignored.

6. Lyu and Wong [7] stores the checkpoint data in a

stable storage, it is used in case of failure. IRCFT

uses the checkpoint to update the replica agent

located in the server and the other previous replicas.

7. In case of failure in [4], the checkpoint in the home

server is used to recover the failure and the

replicated copy of the original agent will be sent to

the immediate checkpoint before the fault. But in

IRCFT, the update replica is used to recover the

failure, and it uses the checkpoint in the home

server to recover the failure in case where all

replicas are terminated and there is no way to

recover the failure using the update replica.

7. Implementation

IRCFT using AGLETS-2.0.2 where we evaluated the

round trip time (time required by mobile agent to

complete its itinerary) and the agent survivability. The

system is run for 30 times for each experiment, then,

the average then was taken for each experiment. The

results are shown in Tables 1, 2, 3, and 4.

Table 1. Effect of round trip time when there is no failure.

Server 4 7 9 13 16 20

IRCFT 7662 12838 16429 23554 29037 36162

Table 2. Effect of round trip time by considering several agent
failure.

Failure in the Server 3 3, 7 3 , 7, 11 3, 7, 11, 15
3, 7, 11, 15,

20

IRCFT before

Checkpoint
6768 15265 23762 32259 42725

IRCFT after

Checkpoint
5591 12911 20231 27551 38017

Table 3. Effect round trip time by considering several agent failure
and blocking of the previous server.

Failure in the Server 3 3, 7 3 , 7, 11 3, 7, 11, 15
3, 7, 11, 15,

20

IRCFT before

Checkpoint
6918 15565 24212 32859 43288

IRCFT after

Checkpoint
5591 12911 20231 27551 38017

Table 4. Survivability.

N° of Servers 1 4 8 12 16 20

Survivability 1 1 0,96 0,93 0,9 0,87

8. Conclusions

The IRCFT approach shows that it can improve and
enhance the survivability of the agent and it will
diminish the time needed for detecting faults and
repairing failure. Then the transmission of mobile
agent to the next server will be more reliable.
Furthermore, it will decrease trip time when errors
occur.

The agent replicas and checkpoint are not executing

while the original executing agent is active. Therefore,

only one execution of the agent will be guaranteed at

the same time. This property ensures the exactly once

execution which is the most important feature for the

agent execution. The non-blocking feature is also

guaranteed even in the case of multiple failures by

allowing the last checkpoint or the replica of the

crashed agent to replace it in order to continue

execution even in the case of agent failures. Hence,

both checkpoint and replication is introduced in the

suggested approaches to solve the blocking problem of

the mobile agent execution where the replication and

checkpoint masks failures and ensures progress of the

mobile agent execution.

For future work, the approaches suggested in [4, 7]

will be implemented and compared to our developed

approach.

References

[1] Bellifemine F., Caire G., and Greenwood D.,

Developing Multi-Agent Systems with JADE,

John Wiley and Sons Ltd, England, 2007.

[2] Dake W., Leguizamo C., and Mori K., “Mobile

Agent Fault Tolerance in Autonomous

Decentralized Database Systems,” in Proceeding

of IEEE Autonomous Decentralized System on

The 2
nd
 International Workshop, Washington DC,

USA, 2002.

[3] Elamary M. and Issa Z., “Using Model Driven

Architecture to Develop Multi- Agent Systems,

Integrated Replication-Checkpoint Fault Tolerance Approach of Mobile Agents “IRCFT” 195

the International Arab Journal of Information,

vol. 10, no. 4, pp. 349-355, 2013.

[4] Hans R. and Kaur R., “Fault Tolerance Approach

in Mobile Agents for Information Retrieval

Applications Using Check Points,” International

Journal of Computer Science and

Communication Networks, vol. 2, no. 3, pp. 347-

353, 2012.

[5] Hans R. and Kaur R., “Novel Dynamic Shadow

Approach for Fault Tolerance in Mobile Agent

Systems,” in Proceeding of 6
th
 International

Conference on Signal Processing

Communication Systems, Publication IEEE

Conference, Gold Coast, Australia, 2012.

[6] Kaur R., Challa, R., and Singh, R., “Integrated

mechanism to Prevent Agent Blocking in Secure

Mobile Agent Platform System,” in Proceeding

of International Conference on Advances in

Computer Engineering, Karnataka, India, pp.

158-162, 2010.

[7] Lyu M. and Wong T., “A Progressive Fault

Tolerant Mechanism in Mobile Agent Systems,”

in Proceeding of 7
th

World Multiconference on

Systemics, Cybernetics and Informatics, vol. 9,

pp. 299–306, 2003.

[8] Marikkannu P., Adri-Jovin J., and Purusothaman

T., “Fault-Tolerant Adaptive Mobile Agent

System using Dynamic Role based Access

Control,” International Journal of Computer

Applications, vol. 20, no.2, 2011.

[9] Mitrović D., Budimac Z., Ivanović M.,

Vidakovic M., “Improving Fault Tolerance of

Distributed Multi-Agent Systems with Mobile

Network-Management Agents,” in Proceeding of

the International Multiconference on Computer

Science and Information Technology, Wisla,

Poland, pp. 217-222, 2010.

[10] Pullum L., Software Fault Tolerance Techniques

and Implementation, Artech House, USA, 2001.

[11] Qu W. and Shen H., “Analysis of Mobile Agents,

Fault-Tolerant Behavior,” in Proceedings of

IEEE/ WIC/ ACM International Conference on

Intelligent Agent Technology, pp. 377-380 ,2004.

[12] Rostami A., Rashidi H., and Zahraie M. , “Fault

Tolerance Mobile Agent System Using Witness

Agent in 2-Dimensional Mesh Network,”

International Journal of Computer Science

Issues, vol. 7, no. 5, pp. 153-158, 2010.

[13] Serugendo G. and Romanovsky A., “Designing

Fault-Tolerant Mobile System,” Springer,

International Workshop on Scientific

Engineering for Distributed Java Applications,

London, UK, 2003.

[14] Singh R. and Dave M., “Antecedence Graph

Approach to Checkpointing for Fault Tolerance

in Mobile Agent Systems”, IEEE Transactions

on Computers, vol. 62, no. 2, 2013.

[15] Zeghache L. and Badache N., “Optimistic

Replication Approach for Transactional Mobile

Agent Fault Tolerance,” in Proceeding of 11
th

ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking

and Parallel/ Distributed Computing, London,

UK, pp. 193-198, 2010.

Suzanne Sweiti received her MSc

degree of Informatics in 2015 from

Palestine Polytechnic University,

Hebron, Palestine, and BCs degree

in Computer Engineering from

University Abderrahmane Mira

Bejaia, Algeria in 2008.

Amal Al Dweik received her PhD of Information

Networks from Cairo University. Currently, she is

working as assistant professor in College of

Information Technology and Computer Engineering in

Palestine Polytechnic University, Hebron, Palestine.

